Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop4710/fall2009

School of Electrical Engineering and Computer Science
University of Central Florida

COP 4710: Database Systems (Chapter 5 Mark Llewellyn




The Physical Design Stage of SDLC

Project Identification Pu _rp_ose Tprog rar_n ming, testi ng_’
and Selection training, installation, documenting
K e Deliverable — operational programs,
and Planning documentation, training materials,
K \%vgram/data structures
Analysis
/\ Logical Design
A\ Physical Design
Database activity — \ A
. . mpiementation
physical database design and P :

database implementation A\ |
Maintenance

#
COP 4710: Database Systems (Chapter 5) Page 2 Mark Llewellyn @j




SQL Overview

« SQL = Structured Query Language.

 The standard for relational database management
systems (RDBMS).

« SQL: 2007 Standards — Purpose:

— Specify syntax/semantics for data definition and
manipulation.

— Define data structures.

— Enable portability.

— Specify minimal (level 1) and complete (level 2) standards.
— Allow for later growth/enhancement to standard.

7
COP 4710: Database Systems (Chapter 5) Page 3 Mark Llewellyn gjj




Benefits of a Standardized Relational
Language

Reduced training costs

Productivity

Application portability

Application longevity

Reduced dependence on a single vendor

Cross-system communication

COP 4710: Database Systems (Chapter 5) Page 4 Mark Llewellyn




The SQL Environment

Catalog
— A set of schemas that constitute the description of a database.

Schema

— The structure that contains descriptions of objects created by a
user (base tables, views, constraints).

Data Definition Language (DDL)

— Commands that define a database, including creating, altering,
and dropping tables and establishing constraints.

Data Manipulation Language (DML)
— Commands that maintain and query a database.

Data Control Language (DCL)

— Commands that control a database, including administering
privileges and committing data.

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




A simplified schematic of a typical SQL environment, as described by
the SQL:2007 standard

SQL Environment - Production
database

PROGRAMS
Catalog: DEV_C Catalog: PROD_C

e l A
Developmenta
2 saL

database g
queries

¥

Required Required
information information
schema schema

User schemas User schemas
[ |

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




Some SQL Data Types (from Oracle 119)
 String types

— CHAR(n) — fixed-length character data, n characters long
Maximum length = 2000 bytes

— VARCHARZ2(n) — variable length character data, maximum 4000
bytes

— LONG - variable-length character data, up to 4GB. Maximum 1
per table
« Numeric types

— NUMBER(p,q) — general purpose numeric data type
— INTEGER(p) — signed integer, p digits wide
— FLOAT((p) — floating point in scientific notation with p binary
digits precision
 Date/time type
— DATE - fixed-length date/time in dd-mm-yy form

#
COP 4710: Database Systems (Chapter 5) Page 7 Mark Llewellyn @j




DDL, DML, DCL, and the database development process

DDL

Define the database:
CREATE tables, indexes, views
Establish foreign keys
Drop or truncate tables

Fhysical Design

DML

Load the database:
INSERT data

UPDATE the database

Manipulate the database:
SELECT

= Implementation

DCL
Control the database:
GRANT, ADD, REVOKE Maintenance

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




SQL Database Definition

 Data Definition Language (DDL)

« Major CREATE statements:

— CREATE SCHEMA — defines a portion of the database
owned by a particular user.

— CREATE TABLE — defines a table and its columns.
— CREATE VIEW - defines a logical table from one or
more views.
« Other CREATE statements: CHARACTER SET,
COLLATION, TRANSLATION, ASSERTION,
DOMAIN.

COP 4710: Database Systems (Chapter 5) Page 9 Mark Llewellyn




Table Creation

General syntax for CREATE TABLE

CREATE TABLE tablename
( {column definition [table constraint] } ., ..
[ON COMMIT {DELETE | PRESERVE} ROWS] );

where column definition ::=
column_name
{domain name | datatype [(size)] }
[column_constraint_clause . . .]
[default value]
[collate clause]

and table constraint ::=
[CONSTRAINT constraint_name]
Constraint_type [constraint_attributes]

Steps in table creation:

1.

Identify data types for
attributes

Identify columns that can
and cannot be null

Identify columns that must
be unique (candidate keys)

Identify primary key-
foreign key mates

Determine default values

Identify constraints on
columns (domain
specifications)

Create the table and
associated indexes

COP 4710: Database Systems (Chapter 5) Page 10

#
Mark Llewellyn @j




Examples of SQL database definition commands

CREATE TABLE CUSTOMER_T
[CLUSTOMER_ID MLUMBER{11, 0} NOT MLILL,
CUSTOMER_NAME VARGHARZ(Z5) NOT NULL,
CUSTOMER_ADDRESS VARCHARZ (0],
CITY VARCHARZ(Z0),
STATE VARCHARZ(Z),
FOSTAL_CODE VARCHARZS),
COMNSTRAINT CUSTOMER_PK PRIMARY KEY (CUSTOMER_ID));

CREATE TABLE ORDER_T
{ORDER_ID NUMBER{11, 0} NOT MULL,
ORDER_DATE DATE DEFALILT SYSDATE,
CUSTOMER_ID NUMEBER({11, 0},
COMSTRAINT ORDER_FK PRIMARY KEY (QORDER_ID,
COMSTRAINT ORDER_FK FOREIGN KEY (CUSTOMER_ID) REFERENCES CUSTOMER_T{CUSTOMER_IDY);

CREATE TABLE PRODUCT_T

(FRODUCT_ID INTEGER NOT MULL,

PRODUCT_DESCRIPTION  VARCHARZ(S0),

PRODUCT_FINISH VARCHAR2(20)

CHECK (PRODUCT _FINISH IN {'Cherry’, ‘Matural Ash', "White Ash’,
‘Red Oak’, ‘Natural Oak’, “Walnut')),

STANDARD PRIGE DECIMAL(S,2),

PRODUCT LINE_ID INTEGER,
CONSTRAINT PRODUCT PK PRIMARY KEY (PRODUCT ID)):

CREATE TABLE ORDER_LINE_T
{ORDER_ID MUMBER{11,0) NOT MULL,
PRODUCT _ID MLUMBER{11,0] NOT MLILL,
ORDERED_QUANTITY NUMBER{11,0,
CONSTRAINT ORDER_LINE_PK PRIMARY KEY (ORDER_ID, PRODUCT_ID),
COMSTRAINT ORDER_LIME_FK1 FOREIGM KEY(ORDER_ID) REFERENGES ORDER_T{ORDER_ID),
CONSTRAINT ORDER_LIME_FK2 FOREIGN KEY (FRODUCT_ID) REFERENCES PRODUCT_T(PRODUCT_IDY;

COP 4710: Database Systems (Chapter 5) Page 11 Mark Llewellyn




Defining attributes and their data types

CREATE TABLE PRODUCT_T

(PRODUCT_ID INTEGER ~ NOTNULL,
PRODUCT DESCRIPTION  VARCHAR2(20))
PRODUCT_FINISH VARCHAR2(20]
————1 > GHECK (PRODUCT_FINISH IN (‘Cherry', ‘Natural Ash’, ‘White Ash
constraint Red Oak', ‘Natural Oak', 'Walnut),

STANDARD PRICE DECIMAL(B,2),
PRODUCT_LINE_ID INTEGER,
CONSTRAINT PRODUCT_PK PRIMARY KEY (PRODUCT_ID))

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




CREATE TABLE PRODL
(PRODU
PRODU

PRODU

CTT

CT 1D
CT_DESCRIPTION
CT_FINISH

Non-null specification
INTEGER

VARCH
VARCH

CHECK (PRODUCT F

STANDARD_PRICE
PRODUCT_LINE_ID

NOT NULL,

AR2(50
AR2(20

NISH IN

(Cherry', ‘Natural Ash’, White Ash

‘Red Oak', ‘Natural Oak', ‘Walnut)),
DECIMAL(E,2),
INTEGER

CONSTRAINT PRODUCT_PK PRIMARY KEY (PRODUCT D))

ldentifying primary key

Primary keys
can never have
NULL values

COP 4710: Database Systems (Chapter 5)

Mark Llewellyn




CREATE TABLE ORDER _LINE_T

(ORDER_ID \U

PRODUCT_ID N
ORDERED_QUANTITY \U

MBER(!
UMBER(11
MBER(!

Non-null specifications

1,0y NOT NULL,
Q) NOT NULL,

0

NT ORDER _LINE_PK PRIMARY KEY (ORDER_

D, PRODUCT_ID),

Primary key

NT ORDER _LINE_FK1 FOREIGN KEY(ORDER ID) REFERENCES ORDER _T(ORDER_ID),
NT ORDER_LINE_FK2 FOREIGN KEY (PRODUCT_ID) REFERENGES PRODUCT_T(PRODUCT D))

Some primary keys are composite —
composed of multiple attributes

COP 4710: Database Systems (Chapter 5)

Mark Llewellyn




Controlling the values in attributes

CREATE TABLE ORDER_T
(ORDER_ID  NUMBER(11. 0NOT NULL. Default value
ORDER_DATE DATE DEFAULT SYSDATE,
CUSTOMER_ID “NUMBER(1T. 0),

CONSTRAINT ORDER_PK PRIMARY KEY (ORDER _ID),

CONSTRAINT ORDER_FK FOREIGN KEY (CUSTOMER_ID) REFERENCES CUSTOMER_T(CUSTOMER _ID)):

CREATE TABLE PRODUCT_T
(PRODUCT_ID INTEGER NOT NULL,
PRODUCT_DESCRIPTION  VARCHAR2(50),
PRODUCT_FINISH VARCHAR2(20)
CHECK (PRODUCT_FINISH IN (‘Cherry’, ‘Natural Ash’, “‘White Ash’,
‘Red Oak’, ‘Natural Oak’, ‘Walnut)),

STANDARD_PRICE DECWALED, o ;
PRODUCT_LINE_ID INTEGER, omain constraint

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




Identifying foreign keys and establishing relationships

CREATE TABLE CUSTOMER T
(CUSTOMER_ID NUMBER(11,NOTNULL, |  Primary key of
CUSTOMER_NAWE VARCHARAZ5)NOTNULL,  parent table
CUSTOMER ADDRESS ~ VARCHAR2(30),

CITY VARCHAR?(20),
(
(

STATE VARCHAR2(2),
POSTAL_CODE VARCHAR2(9),
CONSTRAINT CUSTOMER_PK PRIMARY KEY (CUSTOMER_ID));

CREATE TABLE ORDER T
(ORDER D NUMBER(11, 0) NOT NULL
ORDER DATE DATE DEFAUT SYSDHTE, 0 ey of
CUSTOMER ID NUMBER({1, 0).

CONSTRAINT ORDER._PK PRIVARY KEY (ORDER D). dependent table

CONSTRAINT ORDER_FK FOREIGN KEY (CUSTOMER_ID) REFERENCES CUSTOMER_T(CUSTOMER_ID));

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




Data Integrity Controls

 Referential integrity — constraint that ensures
that foreign key values of a table must match
primary key values of a related table in 1:M
relationships.

» Restricting:
— Deletes of primary records.
— Updates of primary records.
— Inserts of dependent records.

7
COP 4710: Database Systems (Chapter 5) Page 17 Mark Llewellyn gjj




CUSTOMER ORDER
(PK=CUSTOMER_ID) (FK=CUSTOMER_ID)

Restricted Update: A customer ID can only be deleted if it is not found in ORDER table.

CREATE TABLE CUSTOMER_T
(CUSTOMER_ID INTEGER DEFAULT ‘C999" NOT NULL,
CUSTOMER_NAME VARCHAR(40) NOT NULL,

CONSTRAINT CUSTOMER_PK PRIMARY KEY (CUSTOMER_ID),
ON UPDATE RESTRICT);

Cascaded Update: Changing a customer ID in the CUSTOMER table will result in that
value changing in the ORDER table to match.

... ON UPDATE CASCADE),

Set Null Update: When a customer ID is changed, any customer ID in the ORDER table
that matches the old customer ID is set to NULL.

... ON UPDATE SET NULL);

Set Default Update: When a customer ID is changed, any customer ID in the ORDER
tables that matches the old customer ID is set to a predefined default value.

... ON UPDATE SET DEFAULT);

Relational
Integrity Is
enforced via
the primary-

key to foreign-
key match

COP 4710: Database Systems (Chapter 5)

Mark Llewellyn




Changing and Removing Tables

« ALTER TABLE statement allows you to
change column specifications:

_ ALTER TABLE CUSTOMER T ADD (TYPE
VARCHAR(2))

DROP TABLE statement allows you to
remove tables from your schema:

— DROP TABLE CUSTOMER _T

#
COP 4710: Database Systems (Chapter 5) Page 19 Mark Llewellyn @j




Schema Definition

 Control processing/storage efficiency:
— Choice of indexes
— File organizations for base tables
— File organizations for indexes
— Data clustering
— Statistics maintenance

 Creating indexes
— Speed up random/sequential access to base table data

— Example

« CREATE INDEX NAME_IDX ON
CUSTOMER_T(CUSTOMER_NAME)

« This makes an index for the CUSTOMER_NAME field of the
CUSTOMER_T table

COP 4710: Database Systems (Chapter 5) Page 20 Mark Llewellyn




Insert Statement

Adds data to a table

Inserting into a table

— INSERT INTO CUSTOMER_T VALUES (001,
‘Contemporary Casuals’, 1355 S. Himes Blvd.’, ‘Gainesville’,
‘FL’, 32601);

Inserting a record that has some null attributes requires

Identifying the fields that actually get data

— INSERT INTO PRODUCT _T (PRODUCT _ID,
PRODUCT_DESCRIPTION,PRODUCT FINISH STANDARD_PRICE,
PRODUCT ON HAND) VALUES (1, ‘End Table ‘Cherry’, 175, 8);

Inserting from another table

— INSERT INTO CA_CUSTOMER_T SELECT * FROM CUSTOMER_T
WHERE STATE = ‘CA’;

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




Delete Statement

e Removes rows from a table.

e Delete certain rows
— DELETE FROM CUSTOMER_T WHERE
STATE = ‘HI’;
e Delete all rows
— DELETE FROM CUSTOMER T;

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




Update Statement

« Modifies data In existing rows

« UPDATE PRODUCT _T SET UNIT_PRICE =775
WHERE PRODUCT _ID =7;

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




SELECT Statement

» Used for queries on single or multiple tables.

e Clauses of the SELECT statement:

— SELECT
« List the columns (and expressions) that should be returned from the query
— FROM
* Indicate the table(s) or view(s) from which data will be obtained
— WHERE
« Indicate the conditions under which a row will be included in the result
— GROUP BY
« Indicate categorization of results
— HAVING
« Indicate the conditions under which a category (group) will be included

— ORDER BY
« Sorts the result according to specified criteria

COP 4710: Database Systems (Chapter 5) Page 24 Mark Llewellyn




FROM
ldentifies

SQL statement involved tables

. &
processing order WHERE

Finds all rows
meeting stated
condition{s)

k.
GROUFP BY
Organizes rows
according to wvalues
in stated ::Dlumnfsj
h
HAVING
Finds all groups
meeting stated
condition{s)

SELECT
Ildentifies
colurmns

w

ORDER B™
Soris rows

results

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




SELECT Example

 Find products with standard price less than $275

SELECT PRODUCT_NAME, STANDARD_PRICE
FROM PRODUCT_V
WHERE STANDARD_PRICE < 275;

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




SELECT Example using Alias

e Alias iIs an alternative column or table name.

SELECT CUST.CUSTOMER AS NAME,
CUST.CUSTOMER_ADDRESS

FROM CUSTOMER_V CUST
WHERE NAME = ‘Home Furnishings’;

COP 4710: Database Systems (Chapter 5) Page 27 Mark Llewellyn




SELECT Example Using a Function

« Using the COUNT aggregate function to find

totals

SELECT COUNT(*) FROM ORDER_LINE_V

WHERE ORDER_ID = 1004;

Note: with aggregate functions you can’t have single-

valued columns included in the SELECT clause

COP 4710: Database Systems (Chapter 5)

Page 28

Mark Llewellyn

7
()
S,




SELECT Example — Boolean Operators

 AND, OR, and NOT Operators for customizing
conditions in WHERE clause

SELECT PRODUCT_DESCRIPTION, PRODUCT_FINISH,
STANDARD_PRICE

FROM PRODUCT_V

WHERE (PRODUCT_DESCRIPTION LIKE ‘%Desk’
OR PRODUCT_DESCRIPTION LIKE ‘%Table’)
AND UNIT_PRICE > 300;

Note: the LIKE operator allows you to compare strings using wildcards. For
example, the % wildcard in ‘%Desk’ indicates that all strings that have any
number of characters preceding the word “Desk’ will be allowed

#
COP 4710: Database Systems (Chapter 5) Page 29 Mark Llewellyn @j




SELECT Example —
Sorting Results with the ORDER BY Clause

 Sort the results first by STATE, and within a state
by CUSTOMER_NAME

SELECT CUSTOMER_NAME, CITY, STATE
FROM CUSTOMER_V

WHERE STATE IN (‘FL’, ‘TX’, ‘CA’, ‘HI")
ORDER BY STATE, CUSTOMER_NAME;

Note: the IN operator in this example allows you to include rows whose
STATE value is either FL, TX, CA, or HI. It is more efficient than separate
OR conditions

COP 4710: Database Systems (Chapter 5) Page 30 VAR §/'




SELECT Example —
Categorizing Results Using the GROUP BY Clause

 For use with aggregate functions

— Scalar aggregate: single value returned from SQL query with aggregate
function

— Vector aggregate: multiple values returned from SQL query with
aggregate function (via GROUP BY)

SELECT STATE, COUNT(STATE)
FROM CUSTOMER_V
GROUP BY STATE;

Note: you can use single-value fields with aggregate functions
If they are included in the GROUP BY clause.

#
COP 4710: Database Systems (Chapter 5) Page 31 Mark Llewellyn @j




SELECT Example —

Qualifying Results by Category Using the HAVING Clause

e For use with GROUP BY

SELECT STATE, COUNT(STATE)
FROM CUSTOMER V

GROUP BY STATE

HAVING COUNT(STATE) > 1;

Like a WHERE clause, but it operates on groups (categories), not on

individual rows. Here, only those groups with total numbers greater than
1 will be included in final result

#
COP 4710: Database Systems (Chapter 5) Page 32 Mark Llewellyn @j




Processing Multiple Tables — Joins

e JOIN — a relational operation that causes two or more tables with a
common domain to be combined into a single table or view

Equi-join — a join in which the joining condition is based on equality
between values in the common columns; common columns appear
redundantly in the result table

Natural join — an equi-join in which one of the duplicate columns is
eliminated in the result table

Outer join — ajoin in which rows that do not have matching values in

common columns are nonetheless included in the result table (as opposed
to inner join, in which rows must have matching values in order to appear
in the result table)

Union join — includes all columns from each table in the join, and an
instance for each row of each table

The common columns in joined tables are usually the primary key of the
dominant table and the foreign key of the dependent table in 1:M relationshi

#
COP 4710: Database Systems (Chapter 5) Page 33 Mark Llewellyn @j




The following slides create tables for
this enterprise data model

CUSTOMER PRODUCT

Flaces Has

/ \ Is placed by \ Is for

ORDER Contains {

Is contained in

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




Fd Microsofl Access
Ele Edt wew |Inset Format Records Jools Window Help
BBy SRy e o @ Il R A e DA @,

L il e
Crder_ID Order Date | Customer_[D Customer D Customer_Mame

Type a question for help

Customer Address

1355 5 Hines Bivd

1001 10/21/2004| - | Contemporary Casuals
1002 10/21/2004 | 2|Value Fumiture

1003 10/22/2004| 3| Home Fumishings
1004 10/22/2004| 4 Eastern Fumiture
1005 10/24,/2004 | 5| Imprassions

1008 10/24/2004 | B/ Furniture Gallery

1007 10/27 2004 7| Period Furniture

—

15145 S.WW. 171h 5t.
1900 Allard Awe.
1925 Beltline Rd.
5535 Weastcott Cr.
325 Flatiron Dir.

394 Rainbow Dr.

— —
Lo QN IS N A T T Y

1008 10/30/2004. ™~ 8| California Classics
1002 11/5/2004| 9 M and H Cazual F urniture

1010 11/5/2004| 10| Semincle Interiors
11| American Euro Lifestyles

4% & * |2 &+ = &

815 Pasch Rd.

3709 First Street
2400 Rocky Point Dr.
2424 Missoun Ave M.

#* 1] |
Record: M| 4 | 1 _» | #l[k#¥|of 10 "™~ 12 Battle Creek Furniture

13| Heritage Furnishings
14 Kaneohe Hames

15/ Mauntain Scenes

#|  (AutoNumber)

345 Capitol Ave. EW
BEFES College Awve.
112 Kiowai St1.

4132 Main Strest

Record: M| 4 |7 1 ¥ | M |p3¥|cF 18

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




Natural Join Example

 For each customer who placed an order, what is the
customer’s name and order number?

Join involves multiple tables in FROM clause

SELECT CUSTOMER T MER ID, CUSTOMER_NAME, ORDER_ID

FROM CUSTOMER T, ORDER T

WHERE CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID;

!

WHERE clause performs the
equality check for common
columns of the two tables

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




CUSTOMER_ID CUSTOMEH_NAME QUHDER_ID

Contemporary Casuals 1001
Contemporary Casuals 1010
Value Furniture 1006
Home Furnishings 1005
Eastern Furniture 1008
Impressions 1004
Furniture Gallery

Period Furnishings

California Classics

M & H Casual Furniture

Seminole Interiors

1
1
2
3
4
5
6
7
8
o
0
1

1
1

Armerican Euro Lifestyles

Battle Creek Furniture

[ —
L3 k3

Heritage Furnishings
Kaneohe Homes

-
I

15 Mountain Scenes

16 rows selected.

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




Outer Join Example (Microsoft Syntax)

e List the customer name, ID number, and order number
for all customers. Include customer information even
for customers that do have an order

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME,
ORDER_ID

FROI‘I/I CUSTOMER T, LEFT OUTER JOIN ORDER T
ON CUSTOI\/IER_T.?USTOMER_ID = ORDER_T.CUSTOMER_ID;

LEFT OUTER JOIN syntax with
ON keyword instead of WHERE
> causes customer data to appear

even if there is no corresponding
order data

COP 4710: Database Systems (Chapter 5) Page 38 Mark Llewellyn




Outer Join Example (Oracle Syntax)

« List the customer name, ID number, and order number for
all customers. Include customer information even for

customers that do have an order

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME, ORDER_ID

FROM CUSTOMER T, ORDER T

WHERE CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID(+);

Outer join in Oracle uses regular join
syntax, but adds (+) symbol to the
side that will have the missing data

7

#
COP 4710: Database Systems (Chapter 5) Page 39 Mark Llewellyn @j




Multiple Table Join Example

« Assemble all information necessary to create an invoice
for order number 1006

Four tables involved in this join

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME,
CUSTOMER_ADDRESS, CITY, SATE, POSTAL_CODE,
ORDER_T.ORDER_ID, ORDER_DATE, QUANTITY,
PRODUCT NAME, UNIT PRICE, (QUANTITY * UNIT PRICE)

FRO'\/I CUSTOMER_T, ORDER_T, ORDER_LINE_T, PRODUCT_T

ORDER_LINE.CUSTOMER_ID  AND ORDER_T.ORDER_ID =

WHERE CUSTOMER_T.CUSTOMER_ID =
ORIDER_LINE_T.ORDER_ID

PRODUCT_PRODUCT_ID
AND ORDER_T.ORDER_ID = 1006;

Each pair of tables requires an equality-check condition in the WHERE clause,
matching primary keys against foreign keys

AND ORDER_LINE_T.PRODUCT_ID =
I

#
COP 4710: Database Systems (Chapter 5) Page 40 Mark Llewellyn @j




Results from a four-table join

From CUSTOMER T table

CUSTOMER_.  CUSTOMER_  POSTAL_
CUSTOMER_ID ~ CUSTOMER_NAME  CUSTOMER_ADDRESS  CITY ST CODE

Value Furniture 15145 S.W. 17th St. Plano TX 75004 7743
Value Furniture 15145 S.W. 17th St. Plano TX 750984 7743
Value Furniture 15145 S.W. 17th St. Plano TX 75094 7743

ORDERED_ (QUANTITY*
ORDER_ID  ORDER_DATE QUANTITY PRODUCT_NAME STANDARD_PRICE STANDARD_PRICE])

1006 24-0CT-04 1 Entertainment Center 650 650
1006 24-QCT-04 2 Writer's Dask 325 650
1006 24-0CT-04 2 Dining Table BOO 1600

From ORDER_T table From PRODUCT _T table

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




Processing Multiple Tables Using Subqueries

« Subquery — placing an inner query (SELECT
statement) inside an outer query.

« Options:
— In a condition of the WHERE clause.

— As a “table” of the FROM clause.
— Within the HAVING clause.

« Subqueries can be:

— Noncorrelated — executed once for the entire outer query.

— Correlated — executed once for each row returned by the
outer query.

#
COP 4710: Database Systems (Chapter 5) Page 42 Mark Llewellyn @j




Subquery Example

« Show all customers who have placed an order.

The IN operator will test to see if the
CUSTOMER_ID value of arow is

included in the list returned from the
subquery

SELECT CUSTOMER_NAMETFROM CUSTOMER_T
WHERE CUSTOMER ID IN

(SELECT DISTINCT CUSTOMER_ID FROM ORDER_T);l

T

Subquery is embedded in
parentheses. In this case it
returns a list that will be used
In the WHERE clause of the

outer query
(.
COP 4710: Database Systems (Chapter 5) Page 43 Mark Llewellyn gjj




Correlated vs. Noncorrelated Subqueries

« Noncorrelated subqueries:
— Do not depend on data from the outer query.
— Execute once for the entire outer query.

« Correlated subgueries:

— Make use of data from the outer query.
— Execute once for each row of the outer query.
— Can use the EXISTS operator.

#
COP 4710: Database Systems (Chapter 5) Page 44 Mark Llewellyn @j




SELECT CLSTOMER_MAME
FROM CUSTOMER_T

P rOCGSSi ng a WHERE CUSTOMER_ID IN
[SELECT DISTINCT CUSTOMER_ID
noncorrelated FROM ORDER_T)
Su bq uery 1. ;I'rl';::dbquer]' [shoam in the box) is processed first and an intermediate resulls table
CUSTOMER _ID
: No reference to data
‘g in outer query, so
1. The subquery E subguery executes
executes and
returns the o ME once only
CUStomer IDS from 2, Tha outar mar:.r-ramms the requested cusiomer information for each customar includad
the ORDER T table in the imerrmeciate resulls table:
- CUSTOMER_MAME
2. The outer query on ey Eﬂﬁfﬂmls
the results of the LR These are the only
subquery Impressions customers that have

Cralifomia Classics .
Amarican Euro Lifestdes IDS N the ORDER_T

Batila Creek Fumiture
Mountan Sconos ta ble

8 rows salacted,

(.
COP 4710: Database Systems (Chapter 5) Page 45 Mark Llewellyn @j




Correlated Subquery Example

« Show all orders that include furniture finished in natural
ash

The EXISTS operator will return a
TRUE value if the subquery resulted
In a non-empty set, otherwise it
returns a FALSE

SELECT DISINCT ORDER_ID FROM ORDER_LINE_T
WHERH EXISTS
(SELECT * FROM PRODUCT T

WHERE PRODUCT IDF ORDER_LINE_T.PRODUCT_IIZls
AND PRODUCT _ FINISH = ‘Natural ash’); T

The subquery is testing for a value
that comes from the outer query

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




SELECT DISTINGCT ORDER _ID FROM ORDER _LINE _T
WHERE EXISTS

Processing a SeLECT*

|

FROM PRODUCT _T 3 -;’%/,/? ]
WHERE FRODUCT _ID = ORDER _LINE _TPRODUCT _ID i : :
correlated D PRODUGT Mo < N A, L
Subquery refers to outer- a3 -
subgquery query g =
query data, so executes once o = :
for each row of outer query I :
| FNIIH_IDJ Pro ption| Product_Finish| Standard Price | Product Line_id
LR En I::;:I;Bf[: = §iTs00 10001
. = 2— offes Tabke | Azh 200000 20001
Note: only the [ 1+ 4= 3 C-:-m:l.n:r Desk @E@g $375.00 20001
+ 4 Erfedamment Cenler | Malural Maple A0 00 30001
Orders that : # 5 Whiter's Desk Cherry $32500 100
i ¥ B B0 r Cwesser White fsh ¥F5000 200
involve products - 7 Dng Table Rt 2GS o |00,
with Natural e B Computer Desk Walnut $250.00 30001
. #|  [Auoiumber) ¥
ASh WI” b_e 1. The first order 1D is selected from ORDER _LINE _T: ORDER _ID =101,
mCIUded N the 2. The subguery is evaluated to see if any preduct m that order has a natural ash finish, Product 2 does, and
fl na| resu ItS ig part of the order. EXISTS is valued as true and the order |D is added to the result table.

A, The next order 1DV is selected from ORDER _LIME _T: ORDER _ID =1002,

4, The subguery is evaluated to see if the product ordered has a natural ash finesh, |t does, EXISTS is valued
&5 true and the arder ID iz added 1o the result table,

5. Processzing continues through each crder ID. Orders 1004, 1008, and 1010 are not included in the result
table because they do not include any furniture with a natural ash finizh. The final result table iz shown in
the tet on page 303,

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




Another Subquery Example

« Show all products whose price is higher than the average

One column of the subquery is an

Subquery forms the derived table used aggregate function that has an alias
in the FROM clause of the outer query name. That alias can then be referred

to in the outer query

FROM
(SELECT ;LVG(STANDARD PRICE) AVGPRICE|FROM PRODUCT T)
PRODUCT T
WHERE|STANDARD_PRICE > AVG_PRICE;

The WHERE clause normally cannot include aggregate functions, but because the aggregate is
performed in the subquery its result can be used in the outer query’s WHERE clause

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




SQL Join Operations

The SQL join operations merge rows from two tables and
returns the rows that:

1. Have common values in common columns (natural join) or,
2. Meet a given join condition (equality or inequality) or,

3. Have common values in common columns or have no matching
values (outer join).

We’ve already examined the basic form of an SQL join
which occurs when two tables are listed in the FROM clause
and the WHERE clause specifies the join condition.

An example of this basic form of the join is shown on the
next page.

#
COP 4710: Database Systems (Chapter 5) Page 49 Mark Llewellyn @j




SQL Join Operations (cont.)

SELECT P_CODE, P_DESCRIPT, P_PRICE, V_NAME
FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

The FROM clause indicates which tables are to be joined. If
three or more tables are specified, the join operation takes
place two tables at a time, starting from left to right.

The join condition is specified in the WHERE clause. In the
example, a natural join is effected on the attribute V_CODE.

The SQL join syntax shown above is sometimes referred to
as an “old-style” join.

The tables on pages 55 and 56, summarize the SQL join
operations.

COP 4710: Database Systems (Chapter 5) Page 50 VAR §/'




SQL Cross Join Operation

A cross Join in SQL Is equivalent to a Cartesian
product in standard relational algebra. The cross
join syntax Is:

SELECT column-list
FROM tablel, table2;

SELECT column-list _

FROM tablel CROSS JOIN table2;

old style syntax

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




SQL Natural Join Operation

The natural join syntax Is:

SELECT column-list < _

FROM tablel NATURAL JOIN table2;

The natural join will perform the following tasks:

Determine the common attribute(s) by looking for
attributes with identical names and compatible data types.

Select only the rows with common values in the common
attribute(s).

If there are no common attributes, return the cross join of
the two tables.

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




SQL Natural Join Operation (cont)

The syntax for the old-style natural join is:

SELECT column-list

FROM tablel, table2
WHERE tablel.C1 = table2.C2;:

One important difference between t
and the “old-style” syntax Is that t

old style syntax

ne natural join
ne natural join
ualifier for the

does not require the use of a table ¢

common attributes. The two SELECT statements

shown on the next page are equivalen

t.

COP 4710: Database Systems (Chapter 5) Page 53

7
Mark Llewellyn g);




SQL Natural Join Operation (cont)

COP 4710: Database Systems (Chapter 5 Page 54 Mark Llewellyn



Join With Using Clause

A second way to express a join Is through the
USING keyword. This query will return only the
rows with matching values in the column indicated
In the USING clause. The column listed in the
USING clause must appear in both tables.

The syntax Is:

SELECT column-list

FROM tablel JOIN table2 USING (common-column);

#
COP 4710: Database Systems (Chapter 5) Page 55 Mark Llewellyn @j




Join With Using Clause (cont.)

An example:

SELECT INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS,
LINE_PRICE
FROM INVOICE JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE);

As was the case with the natural join command, the
JOIN USING does not required the use of qualified
names (qualified table names). In fact, Oracle 11g
will return an error if you specify the table name in
the USING clause.

COP 4710: Database Systems (Chapter 5) Page 56 VAR §/'




Join On Clause

Both the NATURAL JOIN and the JOIN USING commands
use common attribute names in joining tables.

Another way to express a join when the tables have no
common attribute names is to use the JOIN ON operand.
This query will return only the rows that meet the indicated
condition. The join condition will typically include an
equality comparison expression of two columns. The
columns may or may not share the same name, but must
obviously have comparable data types.

The syntax Is:
SELECT column-list

FROM tablel JOIN table2 ON join-condition;

COP 4710: Database Systems (Chapter 5) Page 57 VAR §/'




Join On Clause (cont)

An example:

SELECT INVOICE.INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE
FROM INVOICE JOIN LINE ON INVOICE.INV_NUMBER = LINE.INV_NUMBER
JOIN PRODUCT ON LINE.P_CODE = PRODUCT.P_CODE;

Notice In the example query, that unlike the NATURAL
JOIN and the JOIN USING operation, the JOIN ON clause
requires the use of table qualifiers for the common attributes.
If you do not specify the table qualifier you will get a
“column ambiguously defined” error message.

Keep in mind that the JOIN ON syntax allows you to
perform a join even when the tables do not share a common
attribute name.

COP 4710: Database Systems (Chapter 5) Page 58 VAR §/'




Join On Clause (cont)

For example, to general a list of all employees with
the manager’s name you can use the recursive query

shown below which utilizes the JOIN ON clause.

SELECT E.EMP_MGR, M.EMP_LNAME, E.EMP_NUM, E.EMP_LNAME
FROM EMP E JOIN EMP M ON E.EMP_MGR = M.EMP_NUM
ORDER BY E.EMP_MGR,;

COP 4710: Database Systems (Chapter 5) Page 59 Mark Llewellyn




Outer Joins

We saw the forms for the LEFT OUTER JOIN and the
RIGHT OUTER JOIN in the previous set of notes.

There is also a FULL OUTER JOIN operation in SQL. A
full outer join returns not only the rows matching the join
condition (that is, rows with matching values in the common
column(s)), but also all the rows with unmatched values In
either side table.

The syntax of a full outer join is:

SELECT column-list
FROM tablel FULL [OUTER] JOIN table2 ON join-condition;

COP 4710: Database Systems (Chapter 5) Page 60 VAR §/'




Outer Joins (cont.

The following example will list the product code,
vendor code, and vendor name for all products and
Include all the product rows (products without
matching vendors) and also all vendor rows
(vendors without matching products):

SELECT P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR FULL OUTER JOIN PRODUCT
ON VENDOR.V_CODE = PRODUCT.V_CODE;

COP 4710: Database Systems (Chapter 5) Page 61 VAR §/'




Su

mmary of SQL JOIN Operations

Join
Classification

Join Type

SQL Syntax Example

Description

Cross

CROSS
JOIN

SELECT *
FROM T1, T2,

Old style. Returns the Cartesian product of T1 and
T2

SELECT *
FROM T1 CROSS JOIN T2;

New style. Returns the Cartesian product of T1 and
T2.

Old Style
JOIN

SELECT *
FROM T1, T2
WHERE T1.C1=T2.C1

Returns only the rows that meet the join condition in
the WHERE clause — old style. Only rows with
matching values are selected.

NATURAL
JOIN

SELECT *
FROM T1 NATURAL JOIN T2

Returns only the rows with matching values in the
matching columns. The matching columns must
have the same names and similar data types.

JOIN USING

SELECT *

FROM T1 JOIN T2 USING
(C1)

Returns only the rows with matching values in the
columns indicated in the USING clause.

JOIN ON

SELECT *
FROM T1 JOIN T2
ONT1.C1=T2.C1

Returns only the rows that meet the join condition
indicated in the ON clause.

COP 4710: Database Systems (Chapter 5)

Mark Llewellyn




Summary of SQL JOIN Operations (cont.)

Join
Classification

Join Type

SQL Syntax Example

Description

Outer

LEFT JOIN

SELECT *

FROM T1 LEFT OUTER
JOIN T2

ONT1.C1=T2.C1

Returns rows with matching values and includes all
rows from the left table (T1) with unmatched values.

RIGHT JOIN

SELECT *

FROM T1 RIGHT OUTER
JOIN T2

ONT1.C1=T2.C1

Returns rows with matching values and includes all
rows from the right table (T2) with unmatched
values.

FULL JOIN

SELECT *

FROM T1 FULL OUTER
JOIN T2

ONT1.C1=T2.C1

Returns rows with matching values and includes all
rows from both tables (T1 and T2) with unmatched
values.

COP 4710: Database Systems (Chapter 5)

Mark Llewellyn




Subqgueries and Correlated Queries

The use of joins allows a RDBMS go get information from
two or more tables. The data from the tables Is processed
simultaneously.

It is often necessary to process data based on other processed
data. Suppose, for example, that you want to generate a list
of vendors who provide products. (Recall that not all
vendors in the VENDOR table have provided products —
some of them are only potential vendors.)

The following query will accomplish our task:

SELECT V_CODE, V_NAME
FROM VENDOR
WHERE V_CODE NOT IN (SELECT V_CODE FROM PRODUCT);

COP 4710: Database Systems (Chapter 5) Page 64 VAR §/'




Subqgueries and Correlated Queries (cont.)

A subguery is a query (SELECT statement) inside a query.
A subquery is normally expressed inside parentheses.

The first query in the SQL statement is known as the outer
query.

The second query In the SQL statement is known as the inner
query.

The inner query is executed first.

The output of the inner query is used as the input for the
outer query.

The entire SQL statement iIs sometimes referred to as a
nested query.

#
COP 4710: Database Systems (Chapter 5) Page 65 Mark Llewellyn @j




Subqgueries and Correlated Queries (cont.)

A subguery can return:

1. One single value (one column and one row). This subquery can be
used anywhere a single value is expected. For example, in the right
side of a comparison expression.

2. A list of values (one column and multiple rows). This type of
subqguery can be used anywhere a list of values is expected. For
example, when using the IN clause.

3. A virtual table (multi-column, multi-row set of values). This type of
subguery can be used anywhere a table is expected. For example, In
the FROM clause.

4. No value at all, i.e., NULL. In such cases, the output of the outer
query may result in an error or null empty set, depending on where
the subquery is used (in a comparison, an expression, or a table set).

#
COP 4710: Database Systems (Chapter 5) Page 66 Mark Llewellyn @j




Correlated Queries

A correlated query (really a subquery) is a subquery that contains a
reference to a table that also appears in the outer query.

A correlated query has the following basic form:

SELECT * FROM tablel WHERE coll = ANY
(SELECT coll FROM table2
WHERE table2.col2 = tablel.coll);

Notice that the subquery contains a reference to a column of tablel,
even though the subquery’s FROM clause doesn’t mention tablel.
Thus, query execution requires a look outside the subquery, and finds the

table reference in the outer query.

#
COP 4710: Database Systems (Chapter 5) Page 67 Mark Llewellyn @j




WHERE Subqgueries

The most common type of subquery uses an inner SELECT
subquery on the right hand side of a WHERE comparison
expression.

For example, to find all products with a price greater than or
equal to the average product price, the following query
would be needed:

SELECT P_CODE, P_PRICE
FROM PRODUCT
WHERE P_PRICE >= (SELECT AVG(P_PRICE)
FROM PRODUCT);

COP 4710: Database Systems (Chapter 5) Page 68 VAR §/'




WHERE Subqueries (cont.)

Subqueries can also be used in combination with joins.

The query below lists all the customers that ordered the
product “Claw hammer”’.

COP 4710: Database Systems (Chapter 5 Page 69 Mark Llewellyn



WHERE Subqueries (cont.)

Notice that the previous query could have been written as:
SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS FNAME
FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)
JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE)
WHERE P_DESCRIPT = ‘Claw hammer’);

However, what would happen if two or more product
descriptions contain the string “Claw hammer”?

— You would get an error message because only a single
value is expected on the right hand side of this expression.

COP 4710: Database Systems (Chapter 5) Page 70 VAR §/'




IN Subqueries

To handle the problem we just saw, the IN operand must be
used.

The query below lists all the customers that ordered any kind
of hammer or saw.

COP 4710: Database Systems (Chapter 5 Page 71 Mark Llewellyn



HAVING Subqueries

It is also possible to use subgueries with a HAVING clause.

Recall that the HAVING clause is used to restrict the output
of a GROUP BY query by applying a conditional criteria to
the grouped rows.

For example, the following query will list all products with
the total quantity sold greater than the average quantity sold.

SELECT DISTINCT P_CODE, SUM(LINE_UNITS)
FROM LINE
GROUP BY P_CODE
HAVING SUM(LINE_UNITS) > (SELECT AVG(LINE_UNITS)
FROM LINE);

COP 4710: Database Systems (Chapter 5) Page 72 Mark Llewellyn g"f




Multi-row Subquery Operators: ANY and ALL

The IN subquery uses an equality operator; that is, it only
selects those rows that match at least one of the values in the
list. What happens if you need to do an inequality
comparison of one value to a list of values?

For example, suppose you want to know what products have
a product cost that is greater than all individual product costs
for products provided by vendors from Florida.
SELECT P_CODE, P_ONHAND*P_PRICE
FROM PRODUCT
WHERE P_ONHAND*P_PRICE > ALL (SELECT P_ONHAND*P_PRICE
FROM PRODUCT
WHERE V_CODE IN (SELECT V_CODE

FROM VENDOR
WHERE V_STATE= ‘FL’)):

COP 4710: Database Systems (Chapter 5) Page 73 Mark Llewellyn g’)?




FROM Subqgueries

In all of the cases of subqueries we’ve seen so far, the subquery was part
of a conditional expression and it always appeared on the right hand side
of an expression. This is the case for WHERE, HAVING, and IN
subqueries as well as for the ANY and ALL operators.

Recall that the FROM clause specifies the table(s) from which the data
will be drawn. Because the output of a SELECT statement is another
table (or more precisely, a “virtual table”), you could use a SELECT
subquery in the FROM clause.

For example, suppose that you want to know all customers who have
purchased products 13-Q2/P2 and 23109-HB. Since all product
purchases are stored in the LINE table, it is easy to find out who
purchased any given product just by searching the P_CODE attribute iIn
the LINE table. However, in this case, you want to know all customers
who purchased both, not just one.

The query on the next page accomplishes this task.

7
COP 4710: Database Systems (Chapter 5) Page 74 Mark Llewellyn gjj




FROM Subgueries (cont.)

COP 4710: Database Systems (Chapter 5 Page 75 Mark Llewellyn



Conditional Expressions Using Case Syntax

This is available with CASE conditional syntax
newer versions of SQL, (CASE expression
previously not part of (WHEN expression

the standard THEN {expression | NULL}} . ..
| {WHEN predicate
THEN {expression | NULL}}. ..
[ELSE {expression NULL}]
END }

| (NULLIF (expression, expression) }
| (COALESCE (expression ... .) ]

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




Ensuring Transaction Integrity

« Transaction = A discrete unit of work that must be
completely processed or not processed at all
— May involve multiple updates
— If any update fails, then all other updates must be cancelled

« SQL commands for transactions

« BEGIN TRANSACTION/END TRANSACTION
— Marks boundaries of a transaction

— COMMIT
« Makes all updates permanent

— ROLLBACK
 Cancels updates since the last COMMIT

COP 4710: Database Systems (Chapter 5) Page 77 Mark Llewellyn




An SQL Transaction sequence (in pseudocode)

BEGIN transaction
INSERT Order ID, Order date, Customer ID into Order t;

INSERT Order ID, Product ID, Quantity inte Order line t;
INSERT Order ID, Product ID, Quantity into Order line t;
INSERT Order ID, Product ID, Quantity into Order line t;

END transaction

Invalid Product 1D entered
Valid information inserted.

COMMIT work
»

¥

Transaction will be ABORTED.
ROLLBACK all changes made to Order_t

All changes to data v
are made permanent. All changes made to Order_t

and Order_line_t are removed.
Database state is just as it was
before the transaction began.

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




Data Dictionary Facilities

« System tables that store metadata
« Users usually can view some of these tables
« Users are restricted from updating them
« Examples in Oracle 119
— DBA_TABLES - descriptions of tables
— DBA_CONSTRAINTS — description of constraints
— DBA_USERS - information about the users of the system
« Examples in Microsoft SQL Server
— SYSCOLUMNS - table and column definitions

— SYSDEPENDS - object dependencies based on foreign keys
— SYSPERMISSIONS — access permissions granted to users

COP 4710: Database Systems (Chapter 5) Page 79 Mark Llewellyn




SQL:2007
Enhancements/Extensions

User-defined data types (UDT)
— Subclasses of standard types or an object type

Analytical functions (for OLAP)

Persistent Stored Modules (SQL/PSM)

— Capability to create and drop code modules

— New statements:

- CASE, IF, LOOP, FOR, WHILE, etc.

« Makes SQL into a procedural language
Oracle has propriety version called PL/SQL, and
Microsoft SQL Server has Transact/SQL

COP 4710: Database Systems (Chapter 5) Page 80 Mark Llewellyn




Routines and Triggers

« Routines
— Program modules that execute on demand

— Functions — routines that return values and take
Input parameters

— Procedures — routines that do not return values
and can take input or output parameters

» Triggers

— Routines that execute In response to a database
event (INSERT, UPDATE, or DELETE)

COP 4710: Database Systems (Chapter 5) Page 81 Mark Llewellyn




Triggers contrasted with stored procedures

routine! - Procedures are called explicitly

Call Stored |,

Procedure_name Praocedure | . returns value
(parameter_value:) ', as performs
S, routine
N,
Explicit execution code SO
Y
RN

S,
A

"

A

TRIGGER!

Database

Insert -
Update ngger performs
Delete // frigger action

Implicit execution

Triggers are event-driven

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




Oracle PL/SQL trigger syntax

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE AFTER} {INSERT | DELETE | UPDATE} ON table_name
[FOR EACH ROW [WHEN (trigger_condition)]]
trigger_body_here;

SQL:2007 Create routine syntax

[CREATE PROCEDURE | CREATE FUNCTION} routine_name
([parameter [{,parameter} . . .]])

[RETURNS data_type result_cast] /* for functions only */

[LANGUAGE {ADA |C|COBOL |FORTRAN | MUMPS | PASCAL | PLI | SQL}]
[PARAMETER STYLE {SOL | GENERAL}]

[SPECIFIC specific_name]

[DETERMINISTIC | NOT DETERMINISTIC]

[NO SQL | CONTAINS SQOL | READS SQOL DATA | MODIFIES SQL DATA]
[RETURN NULL ON NULL INPUT | CALL ON NULL INPUT]

[DYNAMIC RESULT SETS unsigned_integer]  /* for procedures only */
[STATIC DISPATCH] /* for functions only */
routine_body

COP 4710: Database Systems (Chapter 5) Mark Llewellyn




Embedded and Dynamic SQL

 Embedded SQL

— Including hard-coded SQL statements in a program
written in another language such as C or Java

» Dynamic SQL

— Ability for an application program to generate
SQL code on the fly, as the application is running

#
COP 4710: Database Systems (Chapter 5) Page 84 Mark Llewellyn @j




